Publications
Zeige Ergebnisse 101 - 139 von 139
2015
Scharnowski F, Weiskopf N. Cognitive enhancement through real-time fMRI neurofeedback. Current Opinion in Behavioral Sciences. 2015 Aug 1;4:122-127. doi: 10.1016/j.cobeha.2015.05.001
Schwarz A, Scherer R, Steyrl D, Faller J, Muller-Putz GR. A co-adaptive sensory motor rhythms Brain-Computer Interface based on common spatial patterns and Random Forest. in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015. IEEE. 2015. S. 1049-1052 doi: 10.1109/embc.2015.7318545
Scherer R, Faller J, Opisso E, Costa U, Steyrl D, Muller-Putz GR. Bring mental activity into action! An enhanced online co-adaptive brain-computer interface training protocol. in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015. IEEE. 2015. S. 2323-2326 doi: 10.1109/embc.2015.7318858
Steyrl D, Patz F, Krausz G, Edlinger G, Muller-Putz GR. Reduction of EEG artifacts in simultaneous EEG-fMRI: Reference layer adaptive filtering (RLAF). in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015. IEEE. 2015. S. 3803-3806 doi: 10.1109/embc.2015.7319222
Schwarz A, Scherer R, Steyrl D, Faller J, Müller-Putz GR. A Co-adaptive SMR-BCI Based on Common Spatial Patterns and Random Forest. 2015. doi: 10.13140/RG.2.2.27175.16809
Scharnowski F, Veit R, Zopf R, Studer P, Bock S, Diedrichsen J et al. Manipulating motor performance and memory through real-time fMRI neurofeedback. Biological Psychology. 2015;108:85-97. doi: 10.1016/j.biopsycho.2015.03.009
2014
Robineau F, Rieger SW, Mermoud C, Pichon S, Koush Y, Van De Ville D et al. Self-regulation of inter-hemispheric visual cortex balance through real-time fMRI neurofeedback training. NeuroImage. 2014 Okt 15;100:1-14. doi: 10.1016/j.neuroimage.2014.05.072
Muller-Putz GR, Steyrl D, Faller J. Adaptive hybrid brain-computer interaction: Ask a trainer for assistance! in 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014. Chicago: IEEE. 2014. S. 1493-1496 doi: 10.1109/embc.2014.6943884
Bauernfeind G, Steyrl D, Brunner C, Muller-Putz GR. Single trial classification of fNIRS-based brain-computer interface mental arithmetic data: A comparison between different classifiers. in 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014. Chicago: IEEE. 2014. S. 2004-2007 doi: 10.1109/embc.2014.6944008
Wriessnegger SC, Steyrl D, Koschutnig K, Müller-Putz GR. Short time sports exercise boosts motor imagery patterns: implications of mental practice in rehabilitation programs. Frontiers in Human Neuroscience. 2014 Jun 30;8:469. doi: 10.3389/fnhum.2014.00469
Scharnowski F, Koush Y, Elliott MA, Mathiak K. Comparison of real-time water proton spectroscopy and echo-planar imaging sensitivity to the BOLD effect at 3 T and at 7 T. PLoS ONE. 2014 Apr 10;9(3):e91620. doi: 10.1371/journal.pone.0091620
Scharnowski F, Rosa MJ, Golestani N, Hutton C, Josephs O, Weiskopf N et al. Connectivity changes underlying neurofeedback training of visual cortex activity. PLoS ONE. 2014 Mär 7;9(3): e91090. doi: 10.1371/journal.pone.0091090
Bauernfeind G, Pokorny C, Steyrl D, Wriessnegger S, Pichler G, Schippinger W et al. Improved Classification of Auditory Evoked Event-Related Potentials. in Müller-Putz G, Hrsg., Proceedings of the 6th International Brain-Computer Interface Conference 2014: the future of brain-computer interaction: basics, shortcomings, users ; September 16 - 19, 2014, Graz University of Technology, Austria. Graz: Verlag der Technischen Universität Graz. 2014 doi: 10.3217/978-3-85125-378-8-62
Müller-Putz G, (ed.), Bauernfeind G, (ed.), Brunner C, (ed.), Steyrl D, (ed.), Wriessnegger S, (ed.), Scherer R, (ed.). Proceedings of the 6th International Brain-Computer Interface Conference 2014. Graz: Verlag der Technischen Universität Graz, 2014. 407 S. doi: 10.3217/978-3-85125-378-8
2013
Steyrl D, Wriessnegger SC, Müller-Putz GR. Single Trial Motor Imagery Classification in EEG Measured During FMRI Image Acquisition - A First Glance. Biomedical Engineering / Biomedizinische Technik. 2013 Sep;58(Suppl 1):000010151520134450. doi: 10.1515/bmt-2013-4450
Sulzer J, Haller S, Scharnowski F, Weiskopf N, Birbaumer N, Blefari ML et al. Real-time fMRI neurofeedback: progress and challenges. NeuroImage. 2013 Aug 1;76:386-399. doi: 10.1016/j.neuroimage.2013.03.033
Scharnowski F, Koush Y, Rosa MJ, Robineau F, Heinen K, Rieger SW et al. Connectivity-based neurofeedback: dynamic causal modeling for real-time fMRI. NeuroImage. 2013;81:422-430. doi: 10.1016/j.neuroimage.2013.05.010
Scharnowski F, Haller S, Kopel R, Jhooti P, Haas T, Lovblad KO et al. Dynamic reconfiguration of human brain functional networks through neurofeedback. NeuroImage. 2013;81:243-252. doi: 10.1016/j.neuroimage.2013.05.019
Steyrl D, Scherer R, Müller-Putz GR. Random forests for feature selection in non-invasive brain-computer interfacing. in Holzinger A, Pasi G, Hrsg., Human-Computer Interaction and Knowledge Discovery in Complex, Unstructured, Big Data. Berlin: Springer-Verlag Berlin-Heidelberg. 2013. S. 207-216 doi: 10.1007/978-3-642-39146-0_19
Scharnowski F, Koush Y, Elliott MA, Mathiak K. Real-time automated spectral assessment of the BOLD response for neurofeedback at 3 and 7T. Journal of Neuroscience Methods. 2013;218(2):148-160. doi: 10.1016/j.jneumeth.2013.05.002
Steyrl D. Single trial Motor Imagery classification in EEG measured during fMRI image acquisition – a first glance. 2013. doi: 10.13140/RG.2.2.20464.28163
Scharnowski F, Rees G, Walsh V. Time and the brain: Neurorelativity. The chronoarchitecture of the brain from the neuronal rather than the observer's perspective. Trends in Cognitive Sciences. 2013;17(2):51-52. doi: 10.1016/j.tics.2012.12.005
Scharnowski F, Grainger JE, Schmidt T, Herzog MH. Two primes priming: does feature integration occur before response activation? Journal of Vision. 2013;13:19. doi: 10.1167/13.8.19
Steyrl D, Scherer R, Förstner O, Müller-Putz G. Using random forests for classifying motor imagery EEG: Random Forests vs Regularized LDA - Non-linear Beats Linear. in Müller-Putz G, Hrsg., Proceedings of the 6th International Brain-Computer Interface Conference 2014: the future of brain-computer interaction: basics, shortcomings, users ; September 16 - 19, 2014, Graz University of Technology, Austria. Graz: Verlag der Technischen Universität Graz. 2013. S. 252-255 doi: 10.3217/978-3-85125-378-8-61
2012
Scharnowski F, Hutton C, Josephs O, Weiskopf N, Rees G. Improving visual perception through neurofeedback. Journal of Neuroscience. 2012;32(49):17830-17841. doi: 10.1523/jneurosci.6334-11.2012
Steyrl D. On the suitability of random forests for detecting mental imagery for non-invasive brain-computer interfacing. 2012.
2010
Scharnowski F, Hermens F, Herzog MH. Automatic grouping of regular structures. Journal of Vision. 2010;10:5. doi: 10.1167/10.8.5
2009
Scharnowski F, Mathiak K, Weiskopf N. Echtzeit-fMRT. Klinische Neurophysiologie. 2009;40(4):214-221. doi: 10.1055/s-0029-1242755
Scharnowski F, Rüter J, Jolij J, Hermens F, Kammer T, Herzog MH. Long-lasting modulation of feature integration by transcranial magnetic stimulation. Journal of Vision. 2009;9:1. doi: 10.1167/9.6.1
Scharnowski F, Hermens F, Herzog MH. Spatial grouping determines temporal integration. Journal of Experimental Psychology: Human Perception and Performance. 2009;35(3):595–610. doi: 10.1037/a0013706
2007
Scharnowski F, Hermens F, Herzog MH. Bloch's law and the dynamics of feature fusion. Vision Research. 2007;47(18):2444-2452. doi: 10.1016/j.visres.2007.05.004
Scharnowski F, Hermens F, Kammer T, Ögmen H, Herzog MH. Feature fusion reveals slow and fast visual memories. Journal of Cognitive Neuroscience. 2007;19(4):632-641. doi: 10.1162/jocn.2007.19.4.632
Scharnowski F, Herzog MH, Hermens F. Long lasting effects of unmasking in a feature fusion paradigm. Psychological Research. 2007;71:653–658. doi: 10.1007/s00426-006-0062-6
Scharnowski F, Weiskopf N, Sitaram R, Josephs O, Veit R, Goebel R et al. Real-time functional magnetic resonance imaging: methods and applications. Magnetic resonance imaging. 2007;25(6):989-1003. doi: 10.1016/j.mri.2007.02.007
2005
Franz VH, Scharnowski F, Gegenfurtner KR. Illusion effects on grasping are temporally constant not dynamic. Journal of Experimental Psychology: Human Perception and Performance. 2005;31(6):1359-78. doi: 10.1037/0096-1523.31.6.1359
2004
Scharnowski F, Weiskopf N, Mathiak K, Bock SW, Veit R, Grodd W et al. Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI). IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING. 2004;51(6):966-970. doi: 10.1109/tbme.2004.827063
Scharnowski F, Weiskopf N, Veit R, Goebel R, Birbaumer N, Mathiak K. Self-regulation of local brain activity using real-time functional magnetic resonance imaging (fMRI). Journal of Physiology (Paris). 2004;98(4-6):357-373. doi: 10.1016/j.jphysparis.2005.09.019
2003
Kammer T, Scharnowski F, Herzog MH. Combining backward masking and transcranial magnetic stimulation in human observers. Neuroscience Letters. 2003 Jun 12;343(3):171-174. doi: 10.1016/s0304-3940(03)00376-8
Franz VH, Scharnowski F. Grasp effects of visual illusions: Dynamic or stationary? Journal of Vision. 2003;3:127. doi: 10.1167/3.9.127
